Sym(n)- and Alt(n)-modules with an additive dimension
نویسندگان
چکیده
We revisit, clarify, and generalise classical results of Dickson (much later) Wagner on minimal Sym(n)- Alt(n)-modules. present a new, natural notion ‘modules with an additive dimension’ covering at once the classical, finitary case as well modules definable in o-minimal or finite Morley rank setting; this context, we fully identify faithful Alt(n)-modules least dimension.
منابع مشابه
dedekind modules and dimension of modules
در این پایان نامه، در ابتدا برای مدول ها روی دامنه های پروفر شرایط معادل به دست آورده ایم و خواصی از ددکیند مدول ها روی دامنه های پروفر مشخص کرده ایم. در ادامه برای ددکیند مدول های با تولید متناهی روی حلقه های به طور صحیح بسته شرایط معادل به دست آورده ایم و ددکیند مدول های ضربی را مشخص کرده ایم. گزاره هایی در مورد بعد ددکیند مدول ها بیان کرده ایم. در پایان، قضایای lying over و going down را برا...
15 صفحه اولCopresented Dimension of Modules
In this paper, a new homological dimension of modules, copresented dimension, is defined. We study some basic properties of this homological dimension. Some ring extensions are considered, too. For instance, we prove that if $Sgeq R$ is a finite normalizing extension and $S_R$ is a projective module, then for each right $S$-module $M_S$, the copresented dimension of $M_S$ does not exceed the c...
متن کاملUpper bounds for noetherian dimension of all injective modules with Krull dimension
In this paper we give an upper bound for Noetherian dimension of all injective modules with Krull dimension on arbitrary rings. In particular, we also give an upper bound for Noetherian dimension of all Artinian modules on Noetherian duo rings.
متن کاملThe length of Artinian modules with countable Noetherian dimension
It is shown that if $M$ is an Artinian module over a ring $R$, then $M$ has Noetherian dimension $alpha $, where $alpha $ is a countable ordinal number, if and only if $omega ^{alpha }+2leq it{l}(M)leq omega ^{alpha +1}$, where $ it{l}(M)$ is the length of $M$, $i.e.,$ the least ordinal number such that the interval $[0, it{l}(M))$ cannot be embedded in the lattice of all su...
متن کاملOn the Noetherian dimension of Artinian modules with homogeneous uniserial dimension
In this article, we first show that non-Noetherian Artinian uniserial modules over commutative rings, duo rings, finite $R$-algebras and right Noetherian rings are $1$-atomic exactly like $Bbb Z_{p^{infty}}$. Consequently, we show that if $R$ is a right duo (or, a right Noetherian) ring, then the Noetherian dimension of an Artinian module with homogeneous uniserial dim...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2023
ISSN: ['1090-266X', '0021-8693']
DOI: https://doi.org/10.1016/j.jalgebra.2023.02.009